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SUMMARY

A methodology and attendant computer code have been developed and are described to computationally
simulate the uncertain behavior of composite structures. The uncertain behavior includes buckling loads, stress
concentration factors, displacements, stress/strain, etc., which are the consequences of the inherent uncertainties
(scatter) in the primitive (independent random) variables (constituent, ply, laminate, and structural) that describe
the composite structures. The computer code is IPACS (Integrated Probabilistic Assessment of Composite
Structures). IPACS simulates both composite mechanics and composite structural behavior. Application to
probabilistic composite mechanics is illustrated by its use to evaluate the uncertainties in the major Poisson’s
ratio and in laminate stiffness and strength. IPACS application to probabilistic structural analysis is illustrated
by its use to evaluate the uncertainties in the buckling of a composite plate, stress concentration factor in a
composite panel, and the vertical displacement and ply stress in a composite aircraft wing segment. IPACS
application to probabilistic design is illustrated by its use to assess the thin composite shell (pipe)-

INTRODUCTION

Probabilistic composite mechanics and probabilistic composite structural analysis are formal methods which
are used to quantify the scatter that is observed in composite material properties and structural response. The
observed scatter in composite material properties is the range of measured values in modulus, strength, thermal
expansion coefficient, etc., while that in structural response is the range of measured values for displacement,
frequency, buckling load, etc. The formal methods relate the scatter and respective probability of occurrence in
the observed values to the corresponding scatter in the physical parameters which make up the composite and/or
the composite structure. For example, these parameters include constituent material properties, fabrication
process variables, structural component geometry, and any other variables which contribute to the composite
behavior and/or structural response.

The development of these types of formal methods has been the subject of considerable research at NASA
Lewis Research Center. This research has led to computational simulation methods and attendant computer
codes for relating the scatter (uncertainties) in the composite properties or composite structural response to the
corresponding uncertainties in the respective parameters (primitive variables) which are used to describe the
composite in all its inherent scales: micro, macro, laminate, and structural. A more recent continuing develop-
ment is the computer code IPACS (Integrated Probabilistic Assessment of Composite Structures). The objective
of this paper is to summarize the status of IPACS and to present results of select examples to illustrate its
application to evaluate the uncertainties in composites and in composite structures. The fundamental concepts
driving the methodology are briefly described for completeness. The significance and/or relevance of the results
obtained to actual design problems are noted.



FUNDAMENTAL CONCEPTS

The fundamental concepts/assumptions in the probabilistic composite mechanics described herein are
(1) the scatter in all the primitive variables, which describe the composite behavior, can be represented by well
known probabilistic distribution, (2) the values for the primitive variables can be randomly selected from the
known distributions for a specific composite, (3) these values can be used in composite mechanics to predict
composite behavior, and (4) the whole process can be repeated many times to obtain sufficient information to
develop the distribution in order to quantify the probability of occurrence for the ply properties, laminate
properties, or structural responses. This process is analogous to making and testing composites. The probabilis-
tic distributions represent properties of available materials that the composite can be made from. The composite
mechanics represent the physical experiment and the process repetition represents several experiments. Sub-
sequent statistical analysis of the data is the same for both approaches. The primitive variables which describe
-the composite are identified by examining the fabrication process. A schematic depicting the fabrication process
for an aircraft wing top cover is shown in figure 1.

PROBABILISTIC COMPOSITE MECHANICS

Probabilistic composite mechanics is key to probabilistic structural analysis. Probabilistic composite
mechanics from micromechanics to laminate theory is described in reference 1. Briefly it is a combination of
composite mechanics and probability concepts. Respective schematics of the computational simulation of the
physics are shown in figures 2 and 3. Representative results from composite micromechanics (ref. 2) are shown
in figure 4 for the ply longitudinal compressive strength. These results show that the data point lies in the
80 percent probability of occurrence. Of course several other data points will be required to determine the
distribution of the test data. It is interesting to observe from the sensitivity factors that: (1) the fiber volume
ratio (FVR), the matrix compressive strength (SMC), the matrix shear modulus (GM), and the fiber misalign-
ment (THETA 15) affect the ply longitudinal compressive strength in that order of sensitivity; (2) the fiber shear
modulus and the matrix shear strength have comparatively negligible effect; (3) the single experimental point is
near the 80 percent probability; and (4) the level of probability does not affect the magnitude of the sensitivities
(0.0001 versus (.5).

Representative results of probabilistic laminate behavior simulation are summarized in table I for three
different laminates. Scanning the ranges in this table, it can be observed that the mean values of the (scatter not
known) experimental data is within the simulated scatter for all the values except one Poisson’s ratio and two
shear moduli. Both of which are sensitive to the boundary and loading conditions. The simulation scatter can
be modified to include these data points by modeling the specimen in its entirety. Laminate thermal expansion
coefficient results are shown in figure 5. Just about every primitive variable affects this laminate property
except the fiber volume ratio. These sensitivity factors are not affected by probability levels.

PROBABILISTIC STRUCTURAL ANALYSIS

Probabilistic structural analysis is performed by using IPACS (Integrated Probabilistic Assessment of
Composite Structures). A schematic of the physics integrated into IPACS is shown in figure 6 while a block
diagram of its constituent modules is shown in figure 7. As can be seen in figure 6, IPACS consists of a
combination of two major modules. (1) NESSUS (ref. 3) for probabilistic structural analysis and PICAN
(ref. 2) for probabilistic composite mechanics. IPACS is used to evaluate the scatter in several structures as is
described below.



Composite Plate Buckling

Representative results from applying IPACS to simulate buckling of composite plates are shown in fig-
ure 8. The most significant point to observe in this figure is that the plates with the asterisk required probabilis-
tic simulation of the support fixity as will be discussed later to increase the simulated results upper bound in
order to include the experimental values. The fixity of the supports was simulated by assuming a 10 percent
end-moment and a 5 percent scatter about this 10 percent fixity. The conclusion is that experimental results can
be bounded by including uncertainties in all the primitive variables that describe the composite structure.

Stress Concentration Factor

An interesting problem in composite structures is stress concentration factors in open holes. IPACS was
used to evaluate the scatter in the Stress Concentration Factor (SCF) in a composite panel with a center hole as
shown in figure 9. Results obtained for the SCF are shown in figure 10. These results were obtained by
assuming 2 and 5 percent scatter in the participating (primitive) variables that describe the physics of the prob-
lem. In figure 10, results are also shown for comparison with experimental data, an independent source simula-
tion (independent source simulation same as experimental data (ref. 5)) and from a closed form solution. It is
worthy of note that the IPACS results with 2 percent scatter in the primitive-variables bound the data and that
the results from the closed form solution over-predict the stress concentration factor. It is not known what
scatter was used to obtain the independent source results.

The important point to be made is that the IPACS results are obtained by using the whole panel while those
for the closed form solution are only at a point. In a limited way these results underline the importance of
modeling the whole structure to properly account for boundary conditions rather than evaluating responses by
considering only a local region which is the traditional approach. Cumulative distribution function comparisons
are shown in figure 11 for 1.5 percent scatter. The comparisons are excellent and lend credence to the simu-
lation capability in IPACS. The corresponding sensitivity factors for the 2 percent scatter are shown in fig-
ure 12. Only four of the forty factors used have significant effect on the stress concentration factor. All four of
these contribute to the stiffness of the panel. The important observation is that IPACS can handle composite
scatter with numerous primitive variables inherent in fiber composites.

Another interesting stress concentration problem is that depicted in figure 13. What is important in this
case is that it became necessary to include uncertainties in the out-of-plane axial load eccentricity in order to
shift the distribution to the right to match the data. The sensitivity factors are shown in figure 14. The
eccentricity is dominant.

Composite Wing Section

Aircraft wings are current candidates for composites application. The uncertainties in an assumed wing
segment shown in figure 15, are simulated by using IPACS. This section consisted of composite skins with
three-internal spars and three-internal frames as shown by the interrupted lines in the plan view. The composite
system, wing geometry, loading conditions and uncertainties assumed are summarized in figure 15. The IPACS
finite element model consisted of 840 nodes and 908 quadrilateral elements.

The range of uncertainty predicted by IPACS for the transverse (vertical) displacement is shown in fig-
ure 16, where a computer plot of the finite element model is also shown. As can be seen, 3 times out of 10 000
the displacement will be less than 4 in. while 3 times out of 10 000 it will be greater than 7 in. The bounded
range is very useful for the following important reasons: (1) static tests for qualifying the wing segment will
produce results in this range and will be consistent with the uncertainties in the primitive variables which are



used to describe the wing and (2) the 7-in. dimension is critical in sizing actuators to prevent displacements
from growing beyond this range.

The sensitivity factors for the transverse displacement are shown in figure 17. Several factors influence the
lower bound of the displacement while the pressure is the most dominant factor for the upper bound. This is a
very interesting and perhaps an expected result: “The upper bounds of the scatter are mainly influenced by
uncertainties in the loading conditions.”

Corresponding results for the highest longitudinal ply stress are shown in figure 18 for the range of the
scatter in terms of cumulative distribution function. Only about 3 times out of 10 000 the stress will be less
than about 30 ksi or greater than about 55 ksi. The sensitivity factors for the ply longitudinal stress are shown
in figure 19. The stringer misalignment influences the lower bound of the stress scatter. This factor did not
influence the displacement. Only the pressure influences the upper bound of the stress scatter. It is doubtful
that this would be intuitively expected. It demonstrates the wealth of information provided by the probabilistic
structural analysis or, more generally, the computational simulation of probabilistic structural behavior.

Composite Thin Shells

A composite stiffened thin shell (pipe) is probabilistically assessed against probabilistic design criteria. The
diameter of the cylindrical shell is 2 ft and it is 20 ft long as shown in figure 20. The structure is modeled by
588 4-node shell elements and 600 active nodes (6 dof per node). The pipe consists of composite skin, three
composite horizontal circumferential frames, and four composite vertical stringers. The laminate configuration
for skin, frames, and stringers are [+45/0,/+45/0,/+45/0/90], [0,4], and [0p4], respectively. The pipe is assumed
to be supported at one end by a set of translational and torsional spring constants and free at another end. This
type of structure is representative of off-shore risers. When the spring constant approaches infinity, a com-
pletely fixed boundary condition is simulated. If the spring constants are set to be zero, it represents a free
boundary condition. For a given set of spring constants, partially fixed boundary condition is modeled. The
pipe is subjected to axial, lateral, and torsional loads at its free end as shown in figure 21.

The uncertain variables are identified at constituent, ply and structural levels. At constituent, 17 material
properties for graphite fiber and 12 material properties for epoxy matrix of skin, frames and stringers are
modeled as uncertain variables. Their respective probability distribution type and associated parameters are
listed in table II. At ply level, the fabrication variables (fiber volume ratio, void volume ratio, ply orientation,
ply thickness) are treated as random variables. Their statistics are shown in table III. At structural level, spring
constants, which simulates a partially fixed boundary condition, are assigned by a probability distribution to
reflect respective uncertainties. Their statistics are shown in table IV.

In the following, the composite pipe is assessed/checked against two design criteria namely clearance and
delamination. The results and discussions are described.

(1) Clearance Assessment - A failure (violation of design criterion) occurs when the displacement at the
free end in the lateral direction is greater than the allowable value. In this assessment, acceptable failure
probability is chosen to be 1073, From the static analysis, the probabilistic displacement at the free end in the
lateral direction was simulated as shown in figure 22. The critical displacement corresponding to 1073 failure
probability is 5.2 in. If the allowable displacement is 6 in., then the critical displacement falls in the safe
region. It means the clearance criterion is satisfied. If the allowable displacement is 5 in., then critical dis-
placement falls in the failure region. The clearance design is violated and the pipe needs to be redesigned. In
the IPACS sensitivity analysis, it is found that the fiber modulus, fiber volume ratio, ply thickness of the skin,
as well as the random loads in lateral direction have the most contribution to the failure probability as shown in
figure 23.



(2) Delamination Assessment - Delamination buckling (refs. 2 and 6) interlaminar occurs when the ply
stress is greater than the ply delamination strength. From IPACS analysis, the relationship between the ply
interlaminar shear stress S and the independent random variables X is obtained as shown in equation (1).

N N
S=a,+) aX;+), biXi2 (0
i=1 =1

where a, a;, b; are constants; N is number of independent random variables. The ply delamination strength
SpLiic is shown in equation (2).

where
G
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where K; and K, are fiber volume ratio and void volume ratio respectively; Gg, and G,, are fiber and
matrix shear modulus; S+ and S_  are the matrix tensile and shear strength. Defining a limit state function
G as

If G is less than 0, it indicates that laminate stress is greater than the delamination buckling strength. There-
fore, laminate buckling by delamination will occur. The probability of G < 0, computed by FPI (Fast Probabi-
lity Integrator), is 0.012 which is greater than the acceptable failure probability (10™”). From sensitivity
analysis, eight most influential random variables which have the major contribution to the failure probability are
identified as shown in figure 24. It shows that matrix shear strength is the most important one (about 60 per-
cent) followed by the ply thickness (about 40 percent). By controlling, adjusting the mean and standard devia-
tion of those important independent random variables, redesign can be achieved most efficiently. For example,
if the coefficient of variation (scatter) of the intra ply shear strength can be reduced from 5 to 2.5 percent, the
failure probability is reduced to 0.005 which is more than 50 percent reduction improvement by reliability. A
safe design can be accomplished through this (controlling of important variables) procedure.

The four different and important structural examples previously described demonstrate the breadth and
depth of the IPACS computer code to probabilistically assess inherent uncertainties in composite structures. The
results from these three examples are evidence of the maturity of the methodology, the status of the IPACS
computer code and in a limited way, the effectiveness of IPACS for: (1) application to the design of composite
structures and (2) assessment of their reliability.



CONCLUSIONS

Formal methods and a computer code IPACS for integrated probabilistic assessment of composite structures
were described. Select examples for probabilistic composite mechanics and probabilistic structural analysis were
presented to demonstrate the status of the development of the code and its applications. Results from these
examples (composite plate buckling, stress concentration factors, structural response of an aircraft/segment wing,
and probabilistic design assessment of a thin composite pipe) illustrate that IPACS can be used to quantify the
uncertainties in composite structural behavior from the inherent uncertainties in the various parameters that
define the composite structure. In addition, the methodology can be used to evaluate sensitivity factors which
influence composite structural response. Boundary conditions are important in composite plates with certain
laminate configurations. Parameters contributing to stiffness are important in stress concentration factors.

While several factors influence the lower bounds of the vertical displacement and ply stress of an aircraft wing
segment, only the pressure dominates the upper bounds of the scatter. Delamination buckling in thin composite
shells is controlled mainly by matrix shear strength and ply thickness. Collectively, the results demonstrate that
the IPACS computer code has matured to the point that it can be very useful for the design and reliability
assessment of composite structures.
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TABLE L—PICAN VERIFICATION FOR LAMINATE STIFFNESS

Laminate Lower bound Mean Experimental Upper bound
(95% confidence) value® (95% confidence)

[0/£45,/0/445]
Long. modutus (Msi) 5.48 6.31 6.30 7.12
Trans. modulus (Msi) 2.76 3.16 3.08 3.54
Shear modulus (Msi) 334 3.85 321 438
Major Poisson’s ratio N 792 .803 813
[0,/£45/0,/90/0]
Long. modulus (Msi) 11.49 13.27 13.00 15.08
Trans. modulus (Msi) 3.85 4.40 420 493
Shear modulus (Msi) 1.42 1.63 1.50 1.84
Major Poisson’s ratio .305 312 325 318
[(0/£45/90),],
Long. modulus (Msi) 6.27 122 6.68 8.16
Trans. modulus (Msi) 6.27 122 6.62 8.16
Shear modulus (Msi) 2.38 2.74 234 3.10
Major Poisson’s ratio 310 315 .350 320

8Reference 7.

TABLE IL—MATERIAL PROPERTIES AT CONSTITUENT LEVEL FOR BOTH
SKIN AND STRINGERS

Unit Distribution Mean Coefficient of
type variation
Eq; Msi Normal 310 0.05
Epm Msi Normali 20
G2 Msi Normal 20
Gm Msi Normal 1.0
Ye2 -- Normal 0.2
Vi --- Normal 0.25
an; ppm/°F Normal -0.55
A ppm/°F Normal 5.6
Ps Ibfin3 Normal 0.063
N¢ - Constant 10 000
dg in Normal 0.0003
Cs Bt in/°F Normal 0.17
K, Bt in./hrfin.2/°F Normal 580
Km Btu in/he/in2/°F Normal 58
Kgs Bt in/hr/in2/°F Normal 58
Ser Ksi Weibull 400
Sec Ksi Weibull 400
E, Msi Normal 05
G, Msi Normal 0.185
Vm - Normal 035
a, ppm/°F Normal 428
Pm Ibfin3 Normal 0.0443
Cn Btu/in./°F Normal 025
K, Btu in./hr/in.2/°F Normal 1.25
Sor Ksi Weibull 15
Suc Ksi Weibuli 35
Sus Ksi Weibull 13
B in/in/1% moist Normal 0.004 v
D, in3/sec Normal 0.002




TABLE II.—FABRICATION VARIABLES

AT PLY LEVEL
Unit Distribution Mean Coefficent of
type variation
fvr —e- Normal 0.60 0.05
vvr - 02 .05
ep deg .00 9 (stdv)
took in 005 .05
Lost in 02 .05

TABLE IV.—UNCERTAINTIES IN THE

STRUCTURAL LEVEL
Unit Distribution Mean Coefficient of

type variation
K. Ib/in. Normal 30E+06 0.20
Koo Ib-in./rad. 12E+02 20
Fx kips 288 .05
Fy kips 5.76 .05
Mxx kips-ft 576 05
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Figure 22.—Cumulative Distribution (CDF) and Probability Density
Function (PDF) of the lateral displacement at free end.

53 Ef11 of skin
XX3 fvr of skin
1 Pty thickness of skin
0.8 |- Ef11 of stringer
fvr of stringer
£ Ply thickness of stringer
S o6 RSN Force in Y direction
& !
z
2
'g 04— Q
7]
» \
02} §
0 N\

Figure 23.—Sensitivity factors of the lateral displacement at free
end at 0.999 cumulative probability (0.001 failure probability).
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